Factors of binomial sums from the Catalan triangle

نویسندگان

  • Victor J. W. Guo
  • Jiang Zeng
چکیده

By using the Newton interpolation formula, we generalize the recent identities on the Catalan triangle obtained by Miana and Romero as well as those of Chen and Chu. We further study divisibility properties of sums of products of binomial coefficients and an odd power of a natural number. For example, we prove that for all positive integers n1, . . . , nm, nm+1 = n1, and any nonnegative integer r, the expression n 1 ( n1 + nm n1 )−1 n1 ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalan Triangle Numbers and Binomial Coefficients

The binomial coefficients and Catalan triangle numbers appear as weight multiplicities of the finite-dimensional simple Lie algebras and affine Kac–Moody algebras. We prove that any binomial coefficient can be written as weighted sums along rows of the Catalan triangle. The coefficients in the sums form a triangular array, which we call the alternating Jacobsthal triangle. We study various subs...

متن کامل

Identities with squares of binomial coefficients

This paper introduces a method for finding closed forms for certain sums involving squares of binomial coefficients. We use this method to present an alternative approach to a problem of evaluating a different type of sums containing squares of the numbers from Catalan's triangle.

متن کامل

New Sums Identities In Weighted Catalan Triangle With The Powers Of Generalized Fibonacci And Lucas Numbers

In this paper, we consider a generalized Catalan triangle de…ned by km n 2n n k for positive integer m: Then we compute the weighted half binomial sums with the certain powers of generalized Fibonacci and Lucas numbers of the form n X k=0 2n n+ k km n X tk; where Xn either generalized Fibonacci or Lucas numbers, t and r are integers for 1 m 6: After we describe a general methodology to show how...

متن کامل

Some New Binomial Sums Related to the Catalan Triangle

In this paper, we derive many new identities on the classical Catalan triangle C = (Cn,k)n>k>0, where Cn,k = k+1 n+1 ( 2n−k n ) are the well-known ballot numbers. The first three types are based on the determinant and the fourth is relied on the permanent of a square matrix. It not only produces many known and new identities involving Catalan numbers, but also provides a new viewpoint on combin...

متن کامل

On 2-adic Orders of Some Binomial Sums

We prove that for any nonnegative integers n and r the binomial sum n ∑ k=−n ( 2n n− k ) k is divisible by 22n−min{α(n),α(r)}, where α(n) denotes the number of 1s in the binary expansion of n. This confirms a recent conjecture of Guo and Zeng [J. Number Theory, 130(2010), 172–186]. In 1976 Shapiro [3] introduced the Catalan triangle ( k n ( 2n n−k ) )n>k>1 and determined the sum of entries in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009